Accelerated simulation of passive tracers in ocean circulation models

نویسندگان

  • Samar Khatiwala
  • Martin Visbeck
  • Mark A. Cane
چکیده

A novel strategy is proposed for the efficient simulation of geochemical tracers in ocean models. The method captures the tracer advection and diffusion in a general circulation model (GCM) without any alteration (or even knowledge) of the GCM code. In comparison with offline tracer models, the proposed method is considerably more efficient and automatically includes all parameterizations of unresolved processes present in the most sophisticated GCMs. A comparison with a global configuration of the MIT GCM shows that the scheme can capture the complex three-dimensional transport of a state-of-the-art GCM. A key advantage of the proposed technique is the ability to directly compute steady-state solutions, a facility particularly well-suited to tracers such as natural radiocarbon. This capability is applied to develop a novel algorithm for accelerating the dynamical adjustment of ocean models. 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equatorward Spreading of a Passive Tracer with Application to North Pacific Interdecadal Temperature Variations

A simulation is conducted with a realistic ocean general circulation model to investigate the three dimensional spreading of a passive tracer prescribed at the sea surface with the same distribution as the interdecadal sea surface temperature (SST) anomalies observed in the North Pacific. The tracers reaching the equator have the same sign as the major oval-shaped SST anomaly pattern in the cen...

متن کامل

Passive tracers in a general circulation model of the Southern Ocean

Passive tracers are used in an o€-line version of the United Kingdom Fine Resolution Antarctic Model (FRAM) to highlight features of the circulation and provide information on the inter-ocean exchange of water masses. The use of passive tracers allows a picture to be built up of the deep circulation which is not readily apparent from examination of the velocity or density ®elds. Comparison of o...

متن کامل

Using Chemical Tracers to Assess Ocean Models

Chemical tracers can be used to assess the simulated circulation in ocean models. Tracers that have been used in this context include tritium, chlorofluorocarbons, natural and bomb-produced radiocarbon, and to a lesser extent, oxygen, silicate, phosphate, isotopes of organic and inorganic carbon compounds, and certain noble gases (e.g., helium and argon). This paper reviews the use of chemical ...

متن کامل

Evaluating the performance of Atmosphere-Ocean Global Circulation Models (AOGCM) in simulating temperature variable in Ahwaz and Abadan stations

Climate changes caused by global warming has presented challenges to human society. Studying the Changes of climate variables in the future decades by using output data’s of Atmosphere-Ocean Global Circulation Models (AOGCM) is a way of perusing climate fluctuation in a region. In this study, the focus is on the AOGCM proceeds in simulating of variable temperature in Ahwaz and Abadan stations. ...

متن کامل

Learning about the ocean carbon cycle from observational constraints and model simulations of multiple tracers

A key question in studies of the potential for reducing uncertainty in climate change projections is how additional observations may be used to constrain models. We examine the case of ocean carbon cycle models. The reliability of ocean models in projecting oceanic CO2 uptake is fundamentally dependent on their skills in simulating ocean circulation and air–sea gas exchange. In this study we de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004